M9 Quadratwurzeln und reelle Zahlen

1

Die **Quadratwurzel** (oder kurz **Wurzel**) von a ist diejenige nicht negative Zahl, die quadriert a ergibt.

Man schreibt: \sqrt{a}

Die Zahl a unter der Wurzel bezeichnet man als Radikand.

Bemerkung: Der Radikand darf nicht negativ sein! $a \ge 0$

Damit ist das Wurzelziehen die Umkehrung des Quadrierens! $(\sqrt{a})^2 = a$

Zahlen, die sich nicht als endliche oder unendliche periodische Dezimalbrüche, d.h. nicht als Brüche darstellen lassen, nennt man irrationale Zahlen.

z.B. π , $\sqrt{2}$, $\sqrt{3}$, ...

Die rationalen Zahlen und die irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen IR.

M9 Rechnen mit Quadratwurzeln

2

Rechenregeln:

 $\begin{array}{ll} \text{Multiplikations regel} & \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} & \text{für } a,b \geq 0 \\ \\ \text{Divisions regel} & \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} & \text{bzw.} & \sqrt{a} : \sqrt{b} = \sqrt{a : b} & \text{für } a \geq 0, b > 0 \\ \end{array}$

 $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$ für a, b > 0ACHTUNG:

Für jede reelle Zahl a gilt: $\sqrt{a^2} = |a|$ für $a \in IR$

Mithilfe der Multiplikationsregel kann man Wurzeln **teilweise radizieren**: z.B. $\sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = 2 \cdot \sqrt{2}$

Steht im Nenner eines Bruches eine Wurzel, so kann man diesen durch geeignete Umformungen rational machen:

z.B. 1)
$$\frac{3}{\sqrt{5}} = \frac{3\cdot\sqrt{5}}{\sqrt{5}\cdot\sqrt{5}} = \frac{3\cdot\sqrt{5}}{5}$$
 2) $\frac{\sqrt{x-y}}{\sqrt{x+y}} = \frac{\sqrt{x-y}\cdot\sqrt{x+y}}{\sqrt{x+y}\cdot\sqrt{x+y}} = \frac{\sqrt{x^2-y^2}}{|x+y|}$

3)
$$\frac{5}{\sqrt{3+\sqrt{2}}} = \frac{5 \cdot (\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2}) \cdot (\sqrt{3}-\sqrt{2})} = \frac{5 \cdot (\sqrt{3}-\sqrt{2})}{3-2} = \frac{5 \cdot (\sqrt{3}-\sqrt{2})}{1} = 5 \cdot (\sqrt{3}-\sqrt{2})$$
 (mithilfe der 3. binomischen Formel)

M9 Quadratwurzeln und reelle Zahlen

1

Aufgaben:

- 1) Berechne ohne Verwendung des Taschenrechners! $\left[6\frac{1}{4} + \sqrt{3.61} + \sqrt{49}\right]$
- 2) Berechne die Kantenlänge eines Würfels mit dem Oberflächeninhalt $1.5dm^2$!
- 3) Streiche falsche Aussagen durch!

$$\begin{array}{c|c} \sqrt{2} \in \mathbb{Q} & \frac{3}{4} \in \mathbb{Z} & 2 \in \mathbb{Q}_0^+ \\ \frac{8}{2} \in \mathbb{N} & \sqrt{4} \in \mathbb{R} & 0 \in \mathbb{Z} & \sqrt{\frac{8}{2}} \in \mathbb{Z} \\ \hline -\frac{6}{4} \in \mathbb{Q}^- & \sqrt{11} \in \mathbb{R} \setminus \mathbb{Q} & -\sqrt{3} \in \mathbb{R} \end{array}$$

1)
$$\sqrt{6\frac{1}{4} + \sqrt{3,61} + \sqrt{49}} = 2,5 + 1,9 + 7 = 11,4$$

2) $6a^2 = 1,5dm^2 \Rightarrow a^2 = 0,25dm^2 \Rightarrow a = 0,5dm$

2)
$$6a^2 = 1.5dm^2 \implies a^2 = 0.25dm^2 \implies a = 0.5dm$$

M9 Rechnen mit Quadratwurzeln

2

- 1) Vereinfache ohne Verwendung des Taschenrechners: $\sqrt{125} + \sqrt{5} \sqrt{100}$
- 2) Setze für \square einen passenden Term ein und ziehe dann die Wurzel! $\sqrt{4rs + r^2 + \square}$
- 3) Mache den Nenner rational und vereinfache so weit wie möglich! $\frac{3}{\sqrt{10a+3b}}$ (a,b>0)
- 4) Wahr oder falsch? «Das Produkt zweier irrationaler Zahlen ist stets irrational.»

1)
$$\sqrt{125} + \sqrt{5} - \sqrt{20} = \sqrt{25 \cdot 5} + \sqrt{5} - \sqrt{4 \cdot 5} = 5\sqrt{5} + \sqrt{5} - 2\sqrt{5} = (5 + 1 - 2) \cdot \sqrt{5} = 4\sqrt{5}$$

2)
$$\sqrt{4rs + r^2 + \Box} = \sqrt{r^2 + 4rs + 4s^2} = \sqrt{(r+2s)^2} = |r+2s|$$

3)
$$\frac{3}{\sqrt{10a+3}} = \frac{3 \cdot \sqrt{10a+3}}{\sqrt{10a+3b} \cdot \sqrt{10a+3b}} = \frac{3 \cdot \sqrt{10a+3}}{10a+3b}$$

4) Aussage ist falsch, Gegenbeispiel: $\sqrt{2} \cdot \sqrt{2} = 2$

M9 Lösungsformel für quadratische Gleichungen

3

Bei einer quadratischen Gleichung der Form $ax^2 + bx + c = 0$ ($a \ne 0$) unterscheidet man die folgenden Fälle:

- 1) Ist die **Diskriminante** $D = b^2 4ac < 0$, so hat die quadratische Gleichung keine Lösung.
- 2) Ist D = 0, s gibt es genau eine Lösung.
- 3) Ist D>0, so hat die quadratische Gleichung die beiden Lösungen $x_{1/2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

Anwendung:

- Bestimmung der Nullstellen einer quadratischen Funktion
- Bestimmung der Schnittstellen zweier geeigneter Funktionen

M9 Quadratische Funktionen I

4

Funktionen der Form $f: x \mapsto ax^2 + bx + c$ (mit $a, b, c \in IR$, $a \ne 0$) heißen **quadratische Funktionen**. Ihre Graphen nennt man Parabeln.

Sonderfall: Den Graphen von $g(x) = x^2$ bezeichnet man als **Normalparabel**.

Die Parabel der Funktion f ist

- nach oben geöffnet, falls a > 0
- nach unten geöffnet, falls a < 0
- weiter als die Normalparabel, falls |a| < 1
- enger als die Normalparabel, falls |a| > 1

Der Scheitel(punkt) S(d/e) einer Parabel ist der tiefste Punkt (falls die Parabel nach oben geöffnet ist) bzw. der höchste Punkt (falls sie nach unten geöffnet ist).

Wertemenge:

$$a > 0 \Rightarrow W = [e \cdot \infty]$$

$$a > 0 \implies W = [e; \infty[$$
 $a < 0 \implies W =] - \infty; e]$

Monotonieverhalten einer Parabel:

- a > 0: Der Graph fällt links des Scheitels und steigt rechts davon.
- a < 0: Der Graph steigt links des Scheitels und fällt rechts davon.

M9 Lösungsformel für quadratische Gleichungen

3

Aufgaben:

- 1) Berechne alle Lösungen der quadratischen Gleichung: $(t-9)(t+8) = 2t^2 77 + 3t$
- 2) Untersuche die Anzahl der Lösungen in Abhängigkeit von s: $4x^2 + sx = -9$
- 3) Berechne die Koordinaten der Schnittpunkte der Graphen von $f(x) = \frac{1}{4}x^2 + x 1$ und $g(x) = -\frac{3}{4}x^2 + 1$

Lösung:

1)
$$t^2 - 9t + 8t - 72 = 2t^2 - 77 + 3t \Rightarrow -t^2 - 4t + 5 = 0$$

 $t_{1/2} = \frac{+4 \pm \sqrt{16 - 4 \cdot (-1) \cdot 5}}{-2} = \frac{4 \pm \sqrt{36}}{-2} = \frac{4 \pm 6}{-2} = \begin{cases} -5\\1 \end{cases}$

- 2) $4x^2 + sx + 9 = 0 \implies D = b^2 4ac = s^2 4 \cdot 4 \cdot 9 = s^2 144$
 - 1. Fall: genau eine Lösung für $D = s^2 144 = 0$, d.h. s = +12
 - 2. Fall: keine Lösung für $D = s^2 144 < 0$, d.h. |s| < 12 = -12 < s < 12
 - 3. Fall: zwei Lösungen für $D = s^2 144 > 0$, d.h. |s| > 12 = s < -12 oder s > 12

3)
$$\frac{1}{4}x^2 + x - 1 = -\frac{3}{4}x^2 + 1 \Rightarrow x^2 + x - 2 = 0 \Rightarrow x_{\frac{1}{2}} = \frac{-1 \pm \sqrt{1 - 4 \cdot 1 \cdot (-2)}}{2} = \frac{-1 \pm 3}{2} = \begin{cases} 1 \\ -2 \end{cases}$$

Zugehörige Schnittpunkte $S_1(1/\frac{1}{4})$ und $S_2(-2/-2)$

M9 Quadratische Funktionen I

4

Gegeben ist die quadratische Funktion $f(x) = -\frac{1}{3}x^2 - 3x + \frac{1}{3}x^2$

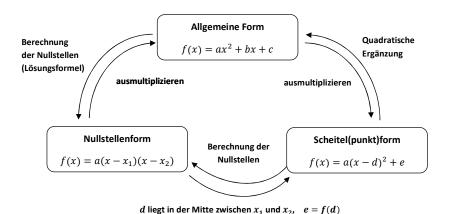
- 1) Beschreibe das Aussehen des Graphen $G_f!$
- 2) Bestimme den Scheitel(punkt) der zugehörigen Parabel!
- 3) Gib die Wertemenge der Funktion f an und beschreibe das Monotonieverhalten der Parabel!

- 1) Die zugehörigen Parabel ist nach unten geöffnet und weiter als die Normalparabel.
- 2) Quadratische Ergänzung: $f(x) = -\frac{1}{2}x^2 3x + \frac{1}{4} = -\frac{1}{2}(x^2 + 6x + 3^2 3^2) + \frac{1}{4} = -\frac{1}{2}[(x+3)^2 9] + \frac{1}{4}$ $= -\frac{1}{2}(x+3)^2 + 4.5 + 0.25 = -\frac{1}{2}(x+3)^2 + 4.75 \implies S(-3/4.75)$
- 3) $W =] \infty; 4,75]$ Der Graph steigt für x < -3 und fällt für x > -3

M9 Quadratische Funktionen II

5

Man unterscheidet folgende Darstellungsformen für quadratische Funktionen:



M9 Lineare Gleichungssysteme (siehe auch M8 – 15)

6

Drei lineare Gleichungen mit drei gemeinsamen Variablen bilden ein lineares Gleichungssystem.

Beispiel: (1) 2a + 5b - 3c = 14

(II) 3a - 5b - c = -11

(III) a + b + c = -1

Zur Lösung verwendet man folgende Schritte:

- 1. Auflösen einer Gleichung nach einer der Variablen
- 2. Einsetzen des ermittelten Terms in die beiden anderen Gleichungen
- 3. Lösen des Gleichungssystems mit zwei Gleichungen und zwei Unbekannten (siehe M8 15)
- 4. Einsetzen der Lösung in die erste Gleichung zur Bestimmung der dritten Unbekannten

Anwendung:

Aufstellen des Funktionsterms einer quadratischen Funktion durch drei beliebige Punkte

M9 Quadratische Funktionen II

5

Aufgaben:

Wandle in die jeweils anderen Darstellungsformen um!

1)
$$f(x) = -0.5(x+2)(x-3)$$

2)
$$g(x) = -3(x-1)^2 + 12$$

3)
$$h(x) = 2x^2 + 8x + 6$$

Lösung:

1) Ausmultiplizieren:
$$f(x) = -0.5(x^2 + 2x - 3x - 6) = -0.5(x^2 - x - 6) = -0.5x^2 + 0.5x + 3$$

 $x_1 = -2$ und $x_2 = 3 \Rightarrow d = \frac{-2+3}{2} = 0.5 \Rightarrow e = f(0.5) = 3.125 \Rightarrow f(x) = -0.5(x - 0.5)^2 + 3.125$

2) Ausmultiplizieren:
$$g(x) = -3(x^2 - 2x + 1) + 12 = -3x^2 + 6x - 3 + 12 = -3x^2 + 6x + 9$$

$$-3x^2 + 6x + 9 = 0 => x_{1/2} = \frac{-6 \pm \sqrt{36 - 4 \cdot (-3) \cdot 9}}{-6} = \frac{-6 \pm 12}{-6} = \left\{ \begin{matrix} -1 \\ 3 \end{matrix} \right. => g(x) = -3(x+1)(x-3)$$

3) Quadratisches Ergänzen:
$$h(x) = 2(x^2 + 4x) + 6 = 2(x^2 + 4x + 4 - 4) + 6 = 2(x + 2)^2 - 2$$

 $2x^2 + 8x + 6 = 0 \Rightarrow x_{1/2} = \frac{-8 \pm \sqrt{64 - 4 \cdot 2 \cdot 6}}{4} = \frac{-8 \pm 4}{4} = \begin{cases} -1 \\ -2 \end{cases} \Rightarrow h(x) = 2(x + 1)(x + 3)$

M9 Lineare Gleichungssysteme

6

Autgabe

Bestimme einen Funktionsterm derjenigen Parabel, die durch die Punkte A(-1/3), B(1,5/3,25) und C(2/6) verläuft!

Lösung:

Ansatz: $y = ax^2 + bx + c$

Setze die drei Punkte in den allgemeinen Funktionsterm ein:

(I)
$$3 = a - b + c$$

$$(II)$$
 3,25 = 2,25 a + 1,5 b + c

$$(III) 6 = 4a + 2b + c$$

Löse (I) nach c auf: c = 3 - a + b und setze den Term in (II) und (III) ein:

(II)
$$3,25 = 2,25a + 1,5b + 3 - a + b = 0,25 = 1,25a + 2,5b$$

$$(III)$$
 6 = 4a + 2b + 3 - a + b => 3 = 3a + 3b

Löse (III) nach a auf: a = 1 - b und setze den Term in (II) ein:

$$(II) 0.25 = 1.25(1-b) + 2.5b = > 0.25 = 1.25 - 1.25b + 2.5b = > b = -0.8$$

Setze b = -1 in (III) ein: a = 1 + 0.8 = 1.8

Setze a, b in (I) ein:
$$c = 3 - 1.8 - 0.8 = 0.4$$

Damit ergibt sich als Funktionsterm: $y = 1.8x^2 - 0.8x + 0.4$

M9 Schnittpunkte von Funktionsgraphen

7

Um die Koordinaten der Schnittpunkte von zwei Graphen zu berechnen, geht man wie folgt vor:

- 1) Gleichsetzen der Funktionsterme
- 2) Lösen der Gleichung (mit Äquivalenzumformungen oder mit der Lösungsformel)
- 3) Einsetzen der x –Koordinate der Schnittpunkts oder der Schnittpunkte in einen der beiden Funktionsterme und Berechnen der y -Koordinate des Schnittpunkts.

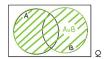
M9 Wahrscheinlichkeit verknüpfter Ereignisse

8

Verknüpfungen zweier Ereignisse A und B eines Zufallsexperiments können mithilfe von Mengendiagrammen dargestellt werden. Dabei interessiert man sich besonders für die Schnittmenge und die Vereinigungsmenge:

Die **Schnittmenge** $A \cap B$ besteht aus den Ergebnissen, die sowohl in A als auch in Benthalten sind.

Die **Vereinigungsmenge** $A \cup B$ besteht aus den Ergebnissen, die in A oder B enthalten sind. Im mathematischen Sinn beschreibt «in A oder B» die Fälle «entweder nur in A oder nur in B oder in beiden».



Die Wahrscheinlichkeiten für das Eintreten verschiedener Ereignisse können in Vierfeldertafeln wie folgt dargestellt werden.

s gilt der Additionssatz : P	$(A \cup B) =$	= P(A) + P(A)	$(R) = P(A \cap R)$
.s giit dei Additionssatz. F	$(H \cup D) =$	$- I(\Lambda) + I($	$D = I (A \cap D)$

	A	$ar{A}$	
В	$P(A \cap B)$	$P(\bar{A}\cap B)$	P(B)
\bar{B}	$P(A \cap \bar{B})$	$P(\bar{A}\cap \bar{B})$	$P(\bar{B})$
	P(A)	$P(\bar{A})$	1

M9 Schnittpunkte von Funktionsgraphen

7

Aufgaben:

Berechne jeweils die Schnittpunkte der zugehörigen Funktionsgraphen:

1)
$$f(x) = (x+2)^2 - 1$$
 und $g(x) = x^2 - 3$

2)
$$f(x) = x^2 - x + 3$$
 und $g(x) = 2x + 1$

3)
$$f(x) = \frac{2}{2-x}$$
 und $g(x) = -x + 2$

Lösung:

1)
$$(x+2)^2 - 1 = x^2 - 3 => x^2 + 4x + 4 - 1 = x^2 - 3 => 4x = -6 => x = -1.5 => S(-1.5/-0.75)$$

2)
$$x^2 - x + 3 = 2x + 1 = x^2 - 3x + 2 = 0 = x_{\frac{1}{2}} = \frac{3 \pm \sqrt{9 - 8}}{2} = \frac{3 \pm 1}{2} = \begin{cases} 2 \\ 1 \end{cases} = S_1(2/5), S_2(1/3)$$

3)
$$\frac{2}{2-x} = -x + 2 = 2 = (-x + 2)(2 - x) = 2 = -2x + 4 + x^2 - 2x = 2x^2 - 4x + 2 = 0$$

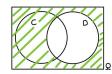
=> $x_{1/2} = \frac{4 \pm \sqrt{16 - 8}}{2} = \frac{4 \pm 2\sqrt{2}}{2} = 2 \pm \sqrt{2} = 2 \pm \sqrt{2}$

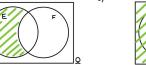
M9 Wahrscheinlichkeit verknüpfter Ereignisse

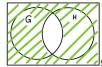
8

Aufgaben:

- 1) Gib jeweils an, welche Menge durch die Schraffur dargestellt ist!







2) A und B sind Ereignisse eines Zufallsexperiments. Beschreibe folgende Wahrscheinlichkeiten in Worten! 1) $P(\bar{A} \cup B)$ b) $P(\overline{A \cap B})$ c) $P((\bar{A} \cap B) \cup (A \cap \bar{B}))$

- a) Ω \ D b) $E \setminus F$ c) $\Omega \setminus (G \cap H)$
- 2) a) Die Wahrscheinlichkeit, dass das Gegenereignis von A oder das Ereignis B eintritt.
 - b) Die Wahrscheinlichkeit, dass die Ereignisse A und B nicht gleichzeitig eintreten.
 - c) Die Wahrscheinlichkeit, dass nur genau eines der beiden Ereignisse eintritt.

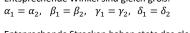
M9 Ähnlichkeit (siehe auch M7 - 15)

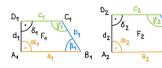
9

Zwei Figuren F und G heißen zueinander **ähnlich**, wenn man sie durch maßstäbliches Vergrößern oder Verkleinern auf zueinander kongruente (siehe M7 – 15) Figuren abbilden kann. Der Faktor, mit dem alle Streckenlängen multipliziert werden, heißt Ähnlichkeitsfaktor k. Man schreibt dann: $F \sim G$

Eigenschaften ähnlicher Figuren:

• Entsprechende Winkel sind gleich groß:





• Entsprechende Strecken haben stets das gleiche Längenverhältnis: $\frac{a_2}{a_1} = \frac{b_2}{b_1} = \frac{c_2}{c_1} = \frac{d_2}{d_1} = k$

• Jede Streckenlänge in F_2 hat den k –fachen Wert der entsprechenden Streckenlänge in F_1 . Der Flächeninhalt von F_2 hat den k^2 -fachen Wert des Flächeninhalts von F_1 . Bei Körpern: Das **Volumen** von K_2 hat den k^3 -fachen Wert des Volumens von K_1 .

Ähnlichkeitssätze für Dreiecke:

Zwei Dreiecke sind genau dann ähnlich, wenn sie:

- 1) im Verhältnis entsprechender Seitenlängen übereinstimmen (S:S:S Satz)
- 2) in 2 (und damit in allen 3) Winkeln übereinstimmen (WW Satz)
- 3) in einem Winkel und dem Verhältnis der anliegenden Seiten übereinstimmen (S:W:S Satz)
- 4) im Verhältnis zweier entsprechender Seiten und dem Gegenwinkel der längeren Seite übereinstimmen. (S:s:W - Satz)

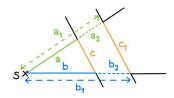
M9 Strahlensatz

10

Strahlensatz bei der V - Figur

Werden zwei Halbgeraden mit dem gleichen Anfangspunkt S von zwei parallelen Geraden wie rechts abgebildet geschnitten, so

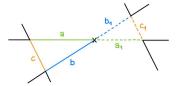
$$\frac{a_1}{a} = \frac{b_1}{b} = \frac{c_1}{c} \quad \text{und} \quad \frac{a_2}{a} = \frac{b_2}{b}$$



Strahlensatz bei der X - Figur

Werden zwei Geraden mit dem Schnittpunkt S von zwei parallelen Geraden wie rechts abgebildet geschnitten, so gilt:

$$\frac{a_1}{a} = \frac{b_1}{b} = \frac{c_1}{c_2}$$



M9 Ähnlichkeit 9

Aufgaben:

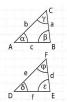
1) Untersuche jeweils begründet, ob die Dreiecke ABC und DEF zueinander ähnlich

a)
$$\alpha = 55^{\circ}, \beta = 30^{\circ}, \delta = 30^{\circ}, \varepsilon = 95^{\circ}$$

b)
$$c = 12cm, a = 9cm, \beta = 66^{\circ}, f = 14,4cm, d = 10,8cm \text{ und } \varepsilon = 66^{\circ}$$

c)
$$a = b = c$$
 und $d = e = f$

2) Zwei ähnliche Vielecke haben die Flächeninhalte $A_1 = 50cm^2$ und $A_2 = 72cm^2$. Der Umfang des ersten Vielecks beträgt $U_1 = 48cm$. Berechne U_2 !



Lösung:

1) a)
$$\gamma = 180^{\circ} - 55^{\circ} - 30^{\circ} = 95^{\circ} = \Delta ABC \sim \Delta DEF$$
 (nach WW)

b)
$$\frac{14.4cm}{12cm}$$
 = 1,2 und $\frac{10.8cm}{9c}$ = 1,2 => $\Delta ABC \sim \Delta DEF$ (nach S:W:S) c) $\Delta ABC \sim \Delta DEF$ (nach S:S:S)

2)
$$k^2 = \frac{A_2}{A_1} = \frac{72cm^2}{50cm^2} = 1,44 => k = 1,2 => U_2 = k \cdot U_1 = 1,2 \cdot 48cm = 57,6cm$$

M9 Strahlensatz 10

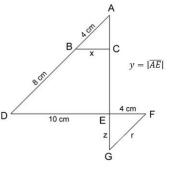
In der nebenstehenden (nicht maßstäblichen Figur) gelte:

 $AD \parallel FG \text{ und } BC \parallel DF$

Die Strecke \overline{AG} habe die Länge $|\overline{AG}| = 21cm$.

Berechne die Streckenlängen x, r, y und z!

Runde wo nötig dein Ergebnis auf mm!



Losing:
$$\frac{x}{10cm} = \frac{4cm}{4cm+8} = > x = \frac{4}{12} \cdot 10cm = 3\frac{1}{3}cm$$

$$\frac{r}{12cm} = \frac{4cm}{10cm} = > r = \frac{4}{10} \cdot 12cm = 4.8cm$$

$$\frac{y}{z} = \frac{10cm}{4cm} = > \frac{21cm-z}{z} = \frac{10cm}{4cm} = > 21cm - z = 2.5z = > 21cm = 3.5z = > z = 6cm$$

$$y = 21cm - z = 15cm$$

M9 Potenzfunktionen

Eine Funktion $f: x \mapsto ax^n \min n \in \mathbb{N}$ und $a \in IR \setminus \{0\}$ heißt **Potenzfunktion vom Grad** n.

Eigenschaften:

n gerade		$oldsymbol{n}$ ungerade		
Graph achsensymmetrisch bezüglich der		Graph punktsymmetrisch bezüglich des		
y — Achse		Koordinatenursprungs		
a > 0	a < 0	a > 0	a < 0	
$W = IR_0^+$	$W = IR_0^-$	W = IR	W = IR	
Der Graph verläuft von	Der Graph verläuft von	Der Graph verläuft von	Der Graph verläuft von	
links oben nach rechts	links unten nach rechts	links unten nach rechts	rechts oben nach links	
oben	unten	oben	unten	
Beispiel: $f(x) = 3x^4$	Beispiel: $f(x) = -0.5x^6$	Beispiel: $f(x) = 0.25x^3$	Beispiel: $f(x) = -2x^5$	
3 -2 -1 0 1 2 3	3 -2 -7 0 2 -1 -2 -3 -4	3 -2 0 1 2 3	3 -2 -1 0 1 2 :	

Alle Graphen verlaufen durch die Punkte (0/0) und (1/a).

M9 n-te Wurzeln und Potenzgleichungen

12

11

Die n —te Wurzel von a ($a \ge 0$) ist diejenige nicht negative Zahl, deren n —te Potenz a ergibt.

Man schreibt: $\sqrt[n]{a}$ $(n \in \mathbb{N}, n \ge 2)$

Beim Lösen von **Potenzgleichungen der Form** $x^n=c$ $(n\in\mathbb{N},n\geq 2,c\in IR\setminus\{0\})$ unterscheidet man folgende Fälle:

n gerade		n ungerade	
c > 0	<i>c</i> < 0	c > 0	<i>c</i> < 0
Zwei Lösungen $x_{1/2} = \pm \sqrt[n]{c}$	Keine Lösung	Eine Lösung $x_1 = \sqrt[n]{c}$	Eine Lösu <u>ng</u> $x_1 = -\sqrt[n]{ c }$

Anwendung:

Berechnung der Schnittpunkte der Graphen zweier Potenzfunktionen

M9 Potenzfunktionen 11

Aufgaben:

1) Beschreibe jeweils den charakteristischen Verlauf und die Symmetrie der Graphen gib die Wertemenge an!

a)
$$f(x) = -0.5x^3$$
 b) $g(x) = -2x^4$

- 2) Gib zwei Potenzfunktionen unterschiedlichen Grades an, deren Graphen die folgenden Eigenschaften haben:
 - a) Der Graph ist punktsymmetrisch zum Ursprung und fällt im Intervall]0; ∞[.
 - b) Der Graph verläuft von links unten nach rechts unten und geht durch den Punkt P(-1/-5).

Lösung:

- 1) a) G_f verläuft von links oben nach rechts unten, ist punktsymmetrisch zum Ursprung und hat die Wertemenge W=IR.
 - b) G_g verläuft von links unten nach rechts unten, ist achsensymmetrisch zur y Achse und hat die Wertemenge $W=]-\infty;0]$

2) a) z.B.
$$f(x) = -3x^5$$
 oder $g(x) = -x$
b) z.B. $f(x) = -0.5x^4$ oder $g(x) = -2x^2$

M9 n-te Wurzeln und Potenzgleichungen

12

Aufgaben:

Löse die folgenden Gleichungen:

1)
$$3x^3 - 4 = 20$$

2)
$$x^9 - 1 = -20$$

3)
$$8 + \frac{1}{8}x^8 = -120$$

1)
$$3x^3 = 24 => x^3 = 8 => x_1 = 2$$

2)
$$x^9 = -19 = x_1 = -\sqrt[9]{19}$$

3)
$$\frac{1}{9}x^8 = -128 \Rightarrow x^8 = -1024$$
 keine Lösung

Potenzen mit rationalen Exponenten und allgemeine Wurzeln:

Für $a > 0, z \in \mathbb{Z}$ und $n \in IN, n \ge 2$ gilt:

$$a^{\frac{z}{n}} = \sqrt[n]{a^z}$$
 und $a^{-\frac{z}{n}} = \frac{1}{\sqrt[n]{a^z}}$ und $a^{\frac{1}{n}} = \sqrt[n]{a}$

Potenzgesetze:

Für a, b > 0 und rationale Exponenten r und s gilt:

- **1.** Potenzen mit gleicher Basis: $a^r \cdot a^s = a^{r+s}$ und $\frac{a^r}{a^s} = a^{r-s}$
- **2.** Potenzen mit gleichem Exponenten: $a^r \cdot b^r = (a \cdot b)^r$ und $\frac{a^r}{b^r} = \left(\frac{a}{b}\right)^r$
- **3.** Potenzen von Potenzen: $(a^r)^s = a^{r \cdot s}$

M9 Der Satz des Pythagoras

Satz des Pythagoras

In einem rechtwinkligen Dreieck ist die Summe der Flächeninhalte der beiden Kathetenquadrate gleich dem Flächeninhalt des Hypotenusenquadrats.

Im rechtwinkligen Dreieck mit Hypotenuse c gilt:

$$a^2 + b^2 = c^2$$

Kehrsatz zum Satz des Pythagoras

Wenn für die Seiten a, b und c eines Dreiecks gilt: $a^2 + b^2 = c^2$, dann ist das Dreieck rechtwinklig mit rechtem Winkel bei C.

Anwendung:

- Höhe im gleichseitigen Dreieck (Seitenlänge a): $h = \frac{1}{2}\sqrt{3}a$
- Diagonale eines Quadrats (Seitenlänge a) : $d = \sqrt{2}a$
- Raumdiagonale eines Würfels (Kantenlänge a): $e = \sqrt{3}a$

M9 Potenzgesetze

Aufgaben:

13

14

Vereinfache soweit wie möglich! Es gelte: a, b, x, y > 0

a)
$$\sqrt[3]{(a^9)^4}$$

b)
$$y^{\frac{1}{4}} \cdot \sqrt[4]{xy^5} : \sqrt[4]{x^5y^5}$$

a)
$$\sqrt[3]{(a^9)^4}$$
 b) $y^{\frac{1}{4}} \cdot \sqrt[4]{xy^5} : \sqrt[4]{x^5y^2}$ c) $\left(\frac{b^8}{81a^4}\right)^{-\frac{1}{6}} : \sqrt[3]{\frac{b^8}{3a^4}}$

a)
$$\sqrt[3]{\overline{a^{36}}} = \sqrt{a^{36 \cdot \frac{1}{3}}} = \sqrt{a^{12}} = a^{\frac{12}{2}} = a^6$$

b)
$$y^{\frac{1}{4}} \cdot (xy^5)^{\frac{1}{4}} \cdot (x^5y^2)^{\frac{1}{4}} = \left(\frac{y \cdot xy^5}{x^5y^2}\right)^{\frac{1}{4}} = \left(\frac{y^4}{x^4}\right)^{\frac{1}{4}} = \frac{y}{x}$$

c)
$$\left(\frac{81a^4}{b^8}\right)^{\frac{1}{6}} : \left(\frac{b^8}{3a^4}\right)^{\frac{1}{3}} = \frac{81^{\frac{1}{6} \cdot a^{\frac{4}{6}}}}{b^{\frac{3}{3}}} : \frac{\frac{8}{b^{\frac{3}{3}}}}{b^{\frac{3}{3}}} = \frac{81^{\frac{1}{6} \cdot a^{\frac{2}{3}} \cdot 3^{\frac{1}{3} \cdot a^{\frac{4}{3}}}}{b^{\frac{4}{3} \cdot b^{\frac{3}{3}}}} = \frac{(9^2)^{\frac{1}{6} \cdot 3^{\frac{1}{3}} \cdot a^2}}{b^4} = \frac{9^{\frac{1}{3} \cdot 3^{\frac{1}{3}} \cdot a^2}}{b^4} = \frac{(9 \cdot 3)^{\frac{1}{3}} \cdot a^2}{b^4} = \frac{3a^2}{b^4}$$

M9 Der Satz des Pythagoras

14

13

Aufgaben:

- 1) a) Gegeben ist ein rechtwinkliges Dreieck, bei dem die beiden Katheten die Länge 2dm und 21cm haben. Berechne die Länge der Hypotenuse!
 - b) In einem rechtwinkligen Dreieck ist eine Kathete 40m lang, die Hyptenusenlänge beträgt 41m. Berechne die Länge der zweiten Kathete!
- 2) Untersuche, ob das Dreieck mit den Seitenlängen 3dm, 20cm und 2dm rechtwinklig ist!
- 3) Leite die Formel $e = \sqrt{3}a$ für die Raumdiagonale eines Würfels her!

1) a)
$$c^2 = a^2 + b^2 = (2dm)^2 + (21cm)^2 = 400cm^2 + 441cm^2 = 841cm^2 = > c = 29cm$$

b) $a^2 = c^2 - b^2 = (41m)^2 - (40m)^2 = 1681m^2 - 1600m^2 = 81m^2 = > a = 9m$

- 2) Man muss untersuchen, ob die Gleichung $a^2 + b^2 = c^2$ erfüllt ist: $(3dm)^2 = (30cm)^2 = 900cm^2$ $(20cm)^2 + (2dm)^2 = 400cm^2 + 400cm^2 = 800cm^2$
 - Da die Ergebnisse ungleich sind, ist das Dreieck nicht rechtwinklig.

3) Es gilt:
$$d^2 = a^2 + a^2$$
 (Satz des Pythagoras im Dreieck *ABC*),
 $\Rightarrow d = \sqrt{2}a$
Zudem: $e^2 = |\overline{AC}|^2 + |\overline{CG}|^2 = d^2 + a^2 = 2a^2 + a^2 = 3a^2$
 $\Rightarrow e = \sqrt{3}a$

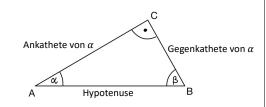
Für die Seitenverhältnisse im rechtwinkligen

Dreieck gilt:

$$sin\alpha = \frac{Gegenkathete\ von\ \alpha}{Hypotenuse}$$

$$cos\alpha = \frac{Ankathete \, von \, o}{Hypotenuse}$$

$$tan\alpha = \frac{Gegenkathete\ von\ \alpha}{Ankathete\ von\ \alpha}$$



Beziehungen zwischen Sinus, Kosinus und Tangens für alle Winkel α mit $0^{\circ} \le \alpha \le 90^{\circ}$:

1.
$$sin\alpha = cos(90^{\circ} - \alpha)$$
 und $cos\alpha = sin(90^{\circ} - \alpha)$

2.
$$(sin\alpha)^2 + (cos\alpha)^2 = 1$$
 (trigonometrischer Pythagoras)

3.
$$tan\alpha = \frac{sin\alpha}{cos\alpha} \quad (\alpha \neq 90^{\circ})$$

M9 Sinussatz und Kosinussatz

16

In jedem beliebigen Dreieck ABC gilt:

1. Sinussatz
$$\frac{a}{b} = \frac{\sin \alpha}{\sin \beta}$$
; $\frac{a}{c} = \frac{\sin \alpha}{\sin \gamma}$ und $\frac{b}{c} = \frac{\sin \beta}{\sin \gamma}$

2. Kosinussatz
$$a^2 = b^2 + c^2 - 2bc \cdot cos\alpha$$

$$b^2 = a^2 + c^2 - 2ac \cdot cos\beta$$

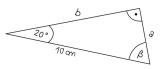
$$c^2 = a^2 + b^2 - 2ab \cdot cosv$$

M9 Sinus, Kosinus und Tangens im rechtwinkligen Dreieck

Aufgaben:

- 1) Berechne die fehlenden Seitenlängen und den Winkel!
- 2) Zeige die Gültigkeit der Gleichung:

$$\frac{1}{\cos^2\alpha} = 1 + \tan^2\alpha$$



Lösung:

1)
$$sin\alpha = \frac{a}{10cm} = > a = 10cm \cdot sin\alpha = 10cm \cdot sin20^{\circ} \approx 3,4cm$$

$$cos\alpha = \frac{b}{10cm} = > b = 10cm \cdot cos\alpha = 10cm \cdot cos20^{\circ} \approx 9,4cm$$

$$\beta = 180^{\circ} - 90^{\circ} - 20^{\circ} = 70^{\circ}$$

2)
$$\frac{1}{\cos^2 \alpha} = 1 + \left(\frac{\sin \alpha}{\cos \alpha}\right)^2 = \frac{1}{\cos^2 \alpha} = 1 + \frac{\sin^2 \alpha}{\cos^2 \alpha} \mid \cos^2 \alpha$$

$$=> 1 = cos^2 \alpha + sin^2 \alpha$$
 (trigonometrischer Pythagoras)

M9 Sinussatz und Kosinussatz

16

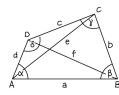
Aufgaben:

1) Berechne alle fehlenden Seitenlängen und Winkel des Dreiecks ABC, wenn gilt:

$$a = 5cm, b = 4cm, \alpha = 60^{\circ}$$

2) Berechne die fehlenden Seitenlängen und Winkel des Vierecks ABCD, wenn gilt:

$$a = 12cm, b = 8cm, c = 6cm, d = 7cm, \alpha = 71^{\circ} \text{ und } \beta = 65^{\circ}$$



1) Sinussatz:
$$\frac{\sin \alpha}{\sin \beta} = \frac{a}{b} = \sum \sin \beta = \frac{b}{a} \cdot \sin \alpha = \frac{4cm}{5cm} \cdot \sin 60^{\circ} = \frac{2}{5} \sqrt{3} = > \beta \approx 43.9^{\circ}$$

 $\gamma = 180^{\circ} - \alpha - \beta \approx 180^{\circ} - 60^{\circ} - 43.9^{\circ} = 76.1^{\circ}$
Kosinussatz: $c^2 = a^2 + b^2 - 2ab \cdot \cos \gamma = > c = \sqrt{a^2 + b^2 - 2ab \cdot \cos \gamma}$
 $c = \sqrt{25cm^2 + 16cm^2 - 2 \cdot 5cm \cdot 4cm \cdot \cos 76.1^{\circ}} \approx 5.6cm$

2) Kosinussatz:
$$e^2 = a^2 + b^2 - 2ab \cdot cos\beta => e = \sqrt{a^2 + b^2 - 2ab \cdot cos\beta} \approx 11cm$$

Kosinussatz: $e^2 = d^2 + c^2 - 2dc \cdot cos\delta => cos\delta = \frac{d^2 + c^2 - e^2}{2d} => \delta \approx 115^\circ$

$$\gamma = 360^{\circ} - \alpha - \beta - \delta \approx 360^{\circ} - 71^{\circ} - 65^{\circ} - 115^{\circ} = \frac{2a}{109}$$

Kosinussatz: $f^2 = a^2 + d^2 - 2ad \cdot cos\alpha = f = \sqrt{a^2 + d^2 - 2ad \cdot cos\alpha} \approx 12cm$